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There are a large number of both theoretical and applied studies of the possible me- 
chanisms for the appearance of nonuniformity, including striated nonuniformity, in the im- 
purity distribution in a growing crystal. The theoretical works are concerned, as a rule, 
with the dependence of the distribution factors on the oscillations of the temperature (or 
concentration) field in the mother phase near the interphase boundary. The nonuniformity 
of the impurity distribution, occurring as a result of a loss of morphological stability 
of the growing face and the appearance of a cellular structure, has been studied in numerous 
works by Sekerka and his co-workers [i]. They, however, made a traditional mathematical 
study of the stability of the solution of Stefan's problem. At the same time, experimental 
studies [2] of samples produced by epitaxy of GaAs from the gas phase, have demonstrated 
the fundamental character of the possible spatially periodic nonstationary processes occur- 
ring on the crystallization front in some apparently extreme regimes of growth of the crys- 
tals. A mechanism for loss of morphological stability, owing to the increasing role of ther- 
mal fluctuations of the parameters of the state of the system at the interphase boundary, 
is proposed in [3]. The purpose of this work is to extend the approach of [3] to study the 
possible effect of heat and mass transfer processes in the mother (liquid or gas) phase on 
the crystallization processes. 

i. Effect of Convection on the Stability of a Flat Crystallization Front. We shall 
study the stability of directed crystallization of a binary alloy with natural convection 
under conditions of microgravity and on earth. The computational results were obtained based 
on the experimental of [4] on the crystallization of AI-Cu alloys with low copper concentra- 
tions (50.1%) in the liquid phase. Good contact between the melt and the walls of the ampul 
was provided during the experiments. Therefore the convective flow, arising due to the depen- 
dence of the surface tension on the temperature and copper concentration in the melt (Maran- 
goni convection), can be neglected. Accordingly, while studying the morphological stability 
of the interphase boundary, in this paper we examine the effect of natural convection on 
the kinetics of the long-wavelength part of the spectrum of locally equilibrium thermal fluc- 
tuations of a flat crystallization front. The effect of these fluctuations is determined 
in the general case by the thickness ~D and 6 T of the diffusion and temperature boundary 
layers. They are evaluated from the relations [5] 

a•r• ~o 3 ~ / f  ~l! 
6r-- , 6 D = ~  60~ -- 

�9 ~/-pr D T pv 0 

where q is the dynamic viscosity, p is the density of the melt, D is the coefficient of dif- 
fusion of the impurity, s and v 0 are the characteristic size and flow velocity of the melt 
near the crystallization front, Pr D = q/pD; Pr = N/PX0; and X0 is the thermal diffusivity 
of the melt. 

The condition of complete mixing of the components of the melt is imposed outside the 
diffusion boundary layer, so that the copper concentration in this region is assumed to be 
given. Inside the diffusion layer the mass transfer to the interphase boundary is deter- 
mined by molecular diffusion. Since for metals 6 T >> 6 D in performing the calculations we 
shall assume that the thickness 6 T is infinite. 

The heat and mass transfer processes in the system (both regular and their fluctuation 
components determined by the thermal fluctuations) are described by the phenomenological 
heat conduction and diffusion equations, on whose right sides random external forces are 
forced: 
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Here t h e  i n d e x  v d e n o t e s  t h e  l i q u i d  (v  = O) and s o l i d  (v  = 1) p h a s e s ,  so  t h a t  T O and T 1 a r e  
the temperature in the melt and in the crystal; c is the copper concentration in the melt; 
and, Cp, p, X are the specific heat capacity, density, and coefficient of thermal diffusivity. 

The external random forces determine the white-noise intensity of the locally equilib- 
rium thermal fluctuations in the system. Their spectral characteristics are determined by 
the fluctuation--dissipation theorem [6] 

qTj(r', t')> = 2kB <T>~ • (r --r')8(t- t') 8~j; (i .3) 

�9 st "r t" st "r' 2k 8 <T> 
,<qD,~ t , ) qD,j ( , t ')> = %'D~ (r - -  r') 8 (t - -  t') ti~j, ( 1 . 4 )  pg 

where ~ is the coefficient of thermal conductivity; Y0 is the kinetic coefficient of diffu- 
sion; k B is Boltzmann's constant; 6(r- r') and 6(t - t') are Dirac delta functions; 6i, j is 
the Kronecker delta function; and, <...> denotes averaging over an ensemble. Equations (i.i) 
and (1.2) are written in a coordinate system moving along the axis of the ingot with the 
velocity at which the ingot is drawn V. We shall represent the temperature and concentration 
fields and the relief function of the interphase boundary e(x, y, t) as sums of regular and 
fluctuation components T = <T> + T, c = <c>, e = <e> + E, so that <T> = <c> = <e> = O. The 
crystallization velocity V = d<e>/dt. The conditions on the crystallization front are as 
follows : 

To I~=~ = T, I,=,, • ~ z=, -- x0 ~ =, = p~q~, 

ac I (t m)~ I Dj~n z=s 

Here a/an is the derivative along the normal to the interphase boundary; q is the specific 
heat of melting; m is the distribution factor of the impurity (for AI-Cu m < i). The experi- 
ments of [4] on the study of morphological stability were performed for low impurity concen- 
trations c < 0.1%. Therefore the equation of the liquidus of the equilibrium phase diagram 
can be approximated by the linear dependence 

T~ ~ = Tea - -  nc  Iz=8. 

Assuming t h a t  t h e  g r o w t h  mechan i sm i s  n o r m a l ,  we s h a l l  r e p r e s e n t  t h e  l o c a l  v e l o c i t y  o f  t h e  
i n t e r p h a s e  b o u n d a r y  a s  

~ = k (req nr ]z=~-- To ]z=~) + r K  (z, y, t), dt 
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where k is the kinetic growth factor; F = ko<T>/plq; o is the surface tension; and, K(x, 
y, t) is the local curvature of the crystallization front. 

Heat transfer between the lateral surface of the sample and an ampul with radius R is 
determined by Newton's law 

OTv I = - ~ ( ~ -  ~). 

Here T h is the temperature at the heater and ~ is the coefficient of thermal conductivity. 
The temperature gradient 8Th/SZ = G h at the faces of the sample in the crystal (z = <s> - s 
and in the melt (z = <s> + s is assumed to be constant and given: 

~_TI = Of_...2 z=i~)+10= 
O z  z = ( e ~ _ l l  Oz 

At t h e  b o u n d a r y  o f  t h e  d i f f u s i o n  b o u n d a r y  l a y e r  

Gh. 

C]z=<e>+6D = C O 

(c o is the impurity concentration in the core of the melt). For the temperature and concen- 
tration fields averaged over the ensemble the solution of the one-dimensional problem has 
the form 

I 

_ _  A0 <To> = Th(z) + VnP~176 G h + X 
2o: 2 sh (ao/o) 

exp  (-- aolo) bo) (z ex__p (ao/o).exp [ - - (% + bo)(z_<e>)]l; 
X{ ao---_~-~o exp[ (ao- -  --<e>)]+ ao@.bo 

/o p VRp*CP,1Gh + >( 
<T~> = T h ( Z  ) + 2-----'W-- 2 sh(qZ0(  (~ x -  bx) 

Xexp [ (a l - -  bl) (z--/<e>)] + a l _ ~ b l  ': 

( 1 . 5 )  

(1.6) 

(1.7) 

where a i =  V b ~ +  R2.~/; b i =  V-~'2X i' 

A -- V 0 - - - ~ -  
0 

A1 = v 
>C 1 

plq [a 1 cth (all1) + bl] --  G h (PoCp,o -- plcp,1). 
a o cth (aolo) --  b o -~- a 1 cth (all1) + b 1 ' 

pl q [% cth (aolo) - -  bo] -t- Gh(PoCp, o - -  PlCp,1) 
a o cth (ao/o) -- b o -? a I cth (all1) -I- b I 

The expressions (1.5)-(1.7) enable evaluation of the magnitude of the concentration super- 
cooling in front of the crystallization front. Figure 1 shows the dependence of V O - the 
supercooling gradient in the melt at the interphase boundary - on the magnitude of the ac- 

dO I' c e l e r a t i o n  o f  g r a v i t y  g. Here  V 0 = d--f ~=<~>' @=T~q--<T0> and go = 9 .81  m / s e c 2 ;  c u r v e s  1-3 

were  o b t a i n e d  f o r  d rawing  v e l o c i t i e s  o f  t h e  i n g o t  V = 10 -4 ,  10 -3 ,  and 3"10 -a c m / s e c .  The 
c o p p e r  c o n c e n t r a t i o n  in  t h e  c o r e  o f  t h e  m e l t  was s e t  e q u a l  t o  0.1%, and t h e  m a g n i t u d e  o f  
t h e  t e m p e r a t u r e  g r a d i e n t  a t  t h e  s u r f a c e  o f  t h e  sample  was s e t  e q u a l  t o  1300 deg/m.  

We s h a l l  s e e k  t h e  s o l u t i o n  o f  t h e  p ro b l em  f o r  t h e  f l u c t u a t i o n  componen ts  o f  t h e  t e m p e r a -  
t u r e  T i ,  t h e  c o p p e r  c o n c e n t r a t i o n  in  t h e  m e l t  ~, and t h e  r e l i e f  o f  t h e  i n t e r p h a s e  b ounda ry  
E(x,  y ,  t )  in  t h e  m-k F o u r i e r  r e p r e s e n t a t i o n  w i t h  r e s p e c t  t o  t h e  t i m e  and s p a t i a l  c o o r d i n a t e s  
x ,  y .  We o b t a i n  t h e  e q u a t i o n  f o r  t h e s e  componen ts  by s u b t r a c t i n g  t h e  e q u a t i o n s  f o r  t h e  r e g u -  
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<T~>, <c> from (i.i) and (1.2). In the linear approximation of noninteracting fluctuations 
expressions were derived for e(k, e) in the form of functionals of the random external forces. 
Application of the fluctuation-~issipation theorem (1.3) and (1.4) makes it possible to find 
the spectral densities of the pair correlation functions of the relief of the crystallization 
front. In the region of wave vectors realized in the course of the experiment [4] 

[ ] <~2>k,o ~_ 2 1 k lkB <T2> (• + • + 2n2 (xl + x~ k l k B <T> ~D cth 2 (k6D) X 

[ k ~- + D " + P~q + 

+ (• + • rk3 
k 

+ Pl qV2 
27 u 

+ (XlG 1 + X0G o + 2• + 

nmV (• -4- • GD th (k~D) }--1. 

d<Tv> I " Go = d<c> ;<c> =<c> I~=<e>; (T>= <Tv>l,=<s>; x = (• + • 
Here Gv = d---7---l~=<~>, dz z=<e> 

The characteristic times and scales of the fluctuation formations of the relief of the 
interphase boundary are determined by the position of the roots of the dispersion equation 
for the wave vectors in the complex half-plane: 

2xFka -- = O. k + (x0G~ + • + 2nxGD) k + p~qv2 2• D th (kSo) 
2X 1 D 

The c h a r a c t e r i s t i c  s c a l e  o f  e x p o n e n t i a l  c u t o f f  o f  t h e  c o r r e l a t i o n  f u n c t i o n  (~(r, t)~(r', t ' ) )  
is determined by the imaginary part of the root klm, while the characteristic scale of the 
spatially periodic part is given by its real part 2~kRe -l. The loss of morphological stabil- 
ity of the flat crystallization front is determined by the conditions of the process for 
which kRe ~ 2~kim. Figure 2 shows the dependence of kRe and kim on V for experiments under 
the conditions of microgravity (curves 1 and 2) and on earth (curves 3 and 4). It follows 
from them that as gravity becomes stronger the threshold growth velocities at which loss 
of morphological stability of the interphase boundary occurs increase. This qualitative 
dependence and the numerical values of the threshold velocities V m 10 -3 cm/sec are in agree- 
ment with the experimental data [4]. 

2. Generation of Acoustic Oscillations in the Temperature Gradient During Gaseous 
Epitaxy. A number of studies of thermal acoustic oscillations in pipes have been performed 
[7]. They were carried out neglecting friction in the gas for different models of heat trans- 
fer or using the boundary-layer approximation in describing the gas dynamics and heat trans- 
fer. In [8] the development of self-excited oscillations of the gas in a nonuniformly heated 
channel was studied from the viewpoint of the loss of stability of the stationary flow of 
gas taking into account the temperature dependence of the coefficients of viscosity and ther- 
mal conductivity. 

We shall study the effect of white noise on locally equilibrium thermal fluctuations 
in the gas on the development of long-wavelength self-excited oscillations in a nonuniformly 
heated epitaxial reactor. It is assumed that the diameter of the reactor is much smaller 
than the length of the reactor, and therefore convective flows can be neglected. The system 
of nonstationary gas-dynamics and heat-conduction equations for a viscous ideal gas in the 
axisymmetric case has the form 

p - ~ -  + p (vV) v = --  grad p + ~IAV + t l + ~  grad div v + vost;  

Op 
0--7 + div (pv) = O; 

0T + (vV) r • + --~ + (vV)p + div q~t; pep ~ = 

p = pBT. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Here $ is the bulk viscosity of the gas and B is the specific gas constant of an ideal gas. 
To supplement (1.3), we write the correlation functions of the external stress tensor Oik st, 
according to the fluctuation-dissipation theorem, as 

st [ <a 0 (r, t)o~t(r ', t')> = 2ks<T> ~1 (8~hS,j + 6uSjk) + 

2 ~I) 81.~8k,] 8(r-- r ' )8( t -  t'). + (~-y ( 2 . 5 )  

We supplement Eqs. (2.1)-(2.5) and (1.3) with the boundary conditions 

vl~=R = O; ( 2 . 6 )  

~ I o r  ~o=(vn~)l~=~ (2.7) 

or] = =(TI~=R-- rh), (2.8) 
ar .r= R 

where nr,, n z are the orthonormal basis vectors of a cylindrical coordinate system. 

Here it is assumed that the gas sticks to the walls of the reactor (2.6), the flow is 
axially symmetric (2.7), and Newton's law holds for heat transfer between the gas and the 
reactor (2.8). We denote by T h the temperature at the heater, whose gradient is assumed 
to be constant and given. At the inlet (z = 0) and outlet (z = ~) of the reactor soft bound- 
ary conditions hold: 

Oz az =~z =0" (2.9) 

Once again represent T, p, p, and v as sums of fluctuation and regular components. We inte- 
grate over the cross-section of the reactor the system of equations for T, p, p, and v, lin- 
earized with respect to the fluctuations, from (2.1)-(2.4). Accordingly, we introduce new 
functions Ts, Ps, Us, and Ps sought, such that 

R 2~ 

t yrdr~dq)T(r,z ,q), t) ,  ~, (z, t) = ~R--- ~ 
0 0 

R 2 ~  

us(z, t )= - ~  yrdr ~ d~z(r, z, % t) 
0 0 

(vz is the component of the gas velocity v along the z axis). 

In integrating the gradients of the velocities of the gas fluxes near the walls of the 
reactor it is assumed that the boundary layer approximation is valid: 

Ov z (r, z, t) I ,~ v z (R-  60, z, t) 

I Or r'=R -- ~o 

(6 0 i s  t h e  t h i c k n e s s  o f  t h e  b o u n d a r y  l a y e r ) .  The v a l u e  o f  6 0 can be d e t e r m i n e d  f rom t h e  
s o l u t i o n  o f  t h e  p rob l em o f  t h e  c h a n n e l  f l o w  o f  i n c o m p r e s s i b l e  v i s c o u s  l i q u i d  o s c i l l a t i n g  
w i t h  t h e  f r e q u e n c y  ~ [ 5 ] :  

( vJx (v) I ao = R/R~ k ~ / '  v = V -  ~,ow<p>. (2.1o) 

Here J1 and J2 are Bessel functions of first and second orders, and <p> is the regular com- 
ponent of the density. In the case of a thin boundary layer 

3I" a 
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(F is the gamma function). Finally we obtain the following system of equations for the 
fluctuation parts Ts(z, t), us(z, t), ps(z, t) and ~s(z, t): 

at - -  < T> - ~ + T z  :0; 

.or <p> T u + ~ a - ~ -  + 8.~, . . . . . .  ~, <p> o,- + (v~ 

O~, a'~, HZ =s~, G~ ,  + ? - - I  <r> a~, (divq~'),, 
at % az--T = -- ---~ <p> at + 

where y is the adiabatic constant; G T = 3<T>/~z is the gradient of the regular component 
of the temperature field; c = ~7<p>/<p> is the velocity of sound; and 

(2.11) 

(2.12) 

(2.13) 

- -  3n~<p> - f r l + ~  ~ t' ---~-,1; a ~ - -  R " 

We are studying a nonuniformly heated reactor. Therefore the gas density <p> and 
temperature <T> and therefore the coefficients in the functions sought in (2.11)-(2.13) de- 
pend on z. To simplify the calculations we shall replace them by their average effective 
values, making the assumption that this will not affect the qualitative behavior of the 
functions so obtained. In addition, we set the temperature gradient G T equal to a constant. 
Then the solution of (2.11)-(2.13) can be sought in the form 

"u. ' ~ [-~ exp (iknz) -F ~ exp (-- ikn~.)] 

etc. Here k n = ~n/s is the eigenvalue of the harmonic equation with homogeneous boundary 
conditions of the second kind at the boundary of the region (n = 0, i, 2 .... ). Fourier- 
transforming Eqs. (2.11)-(2.13) with respect to time, we can determine the spectral densi- 
ties of the function sought pn(~), Un(m), Tn(~) in terms of the functionals of the spectral 
densities of the random external forces. Using the fluctuation-dissipation theorem (1.3) 
and (2.5), for the spectral density of the correlation function of the pressure we obtain 

+ 

- , ~ - ~ n + g - 7  ~ +  k ~ x + ~ , + - ~ - ~ -  • 

(2.14) 
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The characteristic fluctuation times of the harmonics with wave vector k n are determined by 
the roots of the dispersion equation 

~" - ~'~ + ~ '  + ' ~ [ ~ / - f  n + ~ + ~ (x~ + ~)  ~ x 
? k  n , - -  . 

x kS ( nZ + L <'~> -~ n + B + xk~ + ~.~ + ,~? + ,:o~ ~ = 0 
(2.15) 

in the complex frequency plane ~.  Here 6~ = ~s[~=~h~. In the general case, all roots of 
(2.15) are complex. There exist, however, critical values of the temperature gradient GT* 
for which real roots of the dispersion equation exist. Figure 3 shows the dependence of 
the imaginary part Im~c,n of the root of (2.15) normalized to the velocity of sound in the 
gas c and the wave number kn, on the temperature gradient in the gas, scaled to the critical 
gradient Gt,~* of the first harmonic. 

Results were obtained for the first, second, and third harmonics of a quartz reactor 
(curves 1-3) with argon as the carrier gas. The real part of the root Re (~c,n) = ckn with 

good accuracy. The reactor is 50 cm long and 5 cm in diameter. For a heater temperature 
of ~ 870~ and a pressure of ~10 s Pa in the reactor the critical magnitude of the temperature 
gradient for the first harmonic G~,~ ~ 3000-4000 deg/m. Thus, when G T = G~,n, where 

�9 )...,_ o,, )] ar, ,~=.7.- /<~,  ~ -~- 'n+~ ~ + ( ~ , - - i ) ( x k ~ + ~ ,  ,: 

there exists a real root of (2.15)A corresponding to the frequency of the acoustic wave of 
the harmonic k n of the reactor: mc n = ckn" In the region of temperature gradients close to 
critical gradients, the correlation'function of the pressure fluctuations 

where ~n- #?~ 
la~-ai~l' 

exp ( -  t -  r 
~ - - T J •  < ~  (z, t), p~ (z', r)> _ ,  G * 

x R e  [ p i ~  exp (ikn I z - -  z'[ + io,~,n It - -  t' I)], 

r = ( ~  sin ( ~ ) ) : ~ ;  

(2.16) 

�9 

pc, .  = - -  (k~c~ + 2knc~*la~ - -  Or,n* I)3• 

(, . -y)]  

• ~ (, , ,+t)(ki~+~) +v ' ~ + ~  ~+ '62  + 

) ))T' + 2~* 4k~,~.~! + ~: ~ v n + ~ ~ + + ~k~ + ~ + V ~  (~ ~ + ~ 

n 4]fn c ~Z" C2 kn ~*=%e.~p(iq~h;C,=2a~c ~ ~ ~ ~  ( - ~ l + ~  f f~+ 

) );1-1 n - -  2 
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In  ( 2 . 1 6 )  ~n i s  t h e  c h a r a c t e r i s t i c  c o r r e l a t i o n  t i m e ,  w h i l e  me, n i s  t h e  c h a r a c t e r i s t i c  f r e -  
quency  o f  t h e  l o n g - w a v e l e n g t h  p a r t  o f  t h e  p r e s s u r e  f l u c t u a t i o n s :  

,~o,n = ck .  + Q cos ((pn) (Gr - G r , . ) .  (2.17) 

As one can see from (2.16), the amplitude of the pressure fluctuations increases as IGT - 
~,nl decreases. The correlation time ~n exhibits an analogous dependence. At the same 

time the n-th harmonic of the reactor is separated and an acoustic wave with frequency mc,n" 
is generated. We note that the estimates (2.16) and (2.17) are valid for values of G T close 
to GT,n*, where the nonlinear effects of the interaction of fluctuations are still insignifi- 
cant. 

Figure 4 shows the dependence of the magnitude of the critical gradient GT,I* for the 
first harmonic on the pressure and temperature. The results were obtained for two limiting 
values of the coefficient of thermal conductivity a = ~ and 0 (curves i and 2) for the same 
parameters of the gas in the reactor as in Fig. 3. It follows from them that when a decreases 
G~ , decreases. Figure 5 shows the dependence of G~, n on the ~ressure for a = 0 for differ- 
ent"harmonics (n = 1 ..... 6 - curves 6-1); one can see that G~, n increases as n increases. 
These results agree qualitatively with the data from gas-dynamic experiments on the study 
of mechanisms of thermoacoustic oscillations in application to the explanation of oscillatory 
combustion effects [7, 8]. 

Thus the approach developed, based on the determination of the effect of white noise 
of thermal fluctuations, is effective for studying the kinetics of threshold processes for 
a wide class of phenomena in open statistical systems. It was shown that fluctuations can 
lead to the formation of stationary and nonstationary periodic structures. In application 
to crystallization processes they could be responsible for the appearance of periodic non- 
uniformities in the distribution of impurities and defects in the solid phase formed for 
values of the technological parameters of the process close to critical values. 
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